| ENG

All

October 21,2015

NSF SBIR: Advanced Materials and Instrumentation (MI)

  • Release Date:10-01-2015
  • Open Date:10-01-2015
  • Due Date:12-08-2015
  • Close Date:12-08-2015

Introduction 
The Advanced Materials and Instrumentation (MI) topic addresses the development of new and improved materials and instruments for a wide variety of commercial and industrial applications. Proposals in Advanced Materials may focus on the creation of innovative material systems and/or on critical fabrication, processing, or manufacturing challenges involved in the successful commercialization of materials. Proposals in Instrumentation may focus on new instruments for use in scientific, industrial, engineering, or manufacturing environments, among others. Types of instruments that will be considered include systems and tools designed for the purposes of detection, characterization, measurement, processing, control, and/or monitoring. A wide variety of applications areas will be considered as part of this topic.

MI1. Metals and Ceramics
Material innovations to improve the performance of and/or allow new functions in metallic and ceramic materials. This topic includes bulk materials (e.g. superalloys, ceramics, and composites) and coatings (e.g. thermal and environmental barrier coatings, and tribological coatings), as well as other morphologies (e.g. foams). This subtopic also includes composites of metallic and ceramic materials (metal-matrix and ceramic-matrix composites).

MI2. Structural and Infrastructural Materials 
Material and process innovations to improve the performance of materials in structural applications. Includes (but is not limited to) materials for civil infrastructure (e.g. cement, concrete, structural panels, etc.) and polymer composites for various applications. Structural materials that are metallic or ceramic should be submitted under topic MI1.

MI3. Coatings and Surface Modifications
Material and process innovations in surface modifications and coatings. Includes (but is not limited to) coatings for improved corrosion and wear resistance, anti-microbial and anti-fouling coatings, surface modifications for specialized applications such as superhydrophobic or biologically/chemically active surfaces, and techniques to improve manufacturability and reduce cost. Refer to the MI1 topic for proposals related to inorganic coatings.

MI4. Multiferroics and Specialized Functional Materials
Innovations related to multiferroics or other functional materials for specialized applications. Includes (but is not limited to) piezoelectrics, ferroelectrics, thermoelectrics, magnetostrictives, or electrochromics, shape memory alloys, ferrofluids, materials for high or low thermal conductivity applications, novel materials for active device or energy harvesting applications, functional thin films, and novel materials for sensing or instrumentation.

MI5. Materials for Sustainability
Material innovations designed for improved sustainability, mitigating adverse environmental impacts, and/or improved public health. Includes (but is not limited to) new processes and techniques that allow for new or increased use of recycled, renewable, non-toxic and/or environmentally-benign materials. Proposals are also encouraged for new innovations that reduce overall energy consumption or waste, or that increase recyclability or reusability at end-of-life.

MI6. Other Materials
New innovations in materials that do not fit into any of the above five materials topics but that nevertheless meet the intellectual merit and broader/commercial impact criteria of the NSF SBIR/STTR program.

MI7. Instrumentation for Characterization and Imaging
New innovations in instrumentation whose primary purpose is measurement, characterization, or imaging. Includes (but is not limited to) optical and electron microscopy, scanning probe methods, magnetic imaging (NMR, MRI, etc.), spectroscopic and chemical methods, and other scientific instrumentation.

MI8. Instrumentation for Detection, Actuation, Control, and Manipulation
New innovations in instrumentation whose primary function is detection, control, or manipulation. Includes (but is not limited to) new instruments for use in industrial processes, manufacturing, research, engineering, military, and/or consumer applications.

MI9. Other Instrumentation
New innovations in instrumentation that do not fit into either of the above two instrumentation topics but that nevertheless meet the intellectual merit and broader/commercial impact criteria of the NSF SBIR/STTR program. Refer to the BT topic for bioinstrumentation.