| ENG

All

October 21,2015

NSF SBIR: Smart Health (SH)

  • Release Date:10-01-2015
  • Open Date:10-01-2015
  • Due Date:12-08-2015
  • Close Date:12-08-2015

Smart Health (SH)
The need for a significant healthcare transformation has been recognized by numerous organizations, including the President's Council of Advisors on Science and Technology (PCAST), National Research Council (NRC), Institute of Medicine (IOM), Computing Community Consortium (CCC), the National Academy of Engineering and the Office of the National Coordinator for Health Information Technology (ONC).
The Smart Health subtopics aim to support the early stage development of novel devices, components, systems, algorithms, networks, applications, or services that will enable the much needed transformation of healthcare from reactive, hospital-centered, and indemnity-based to proactive, person-centered, preventive, and cost-efficient. The SH subtopics are not aimed at supporting clinical trials, the clinical validation of information technologies, or medical devices or studies performed primarily for regulatory purposes. Limited studies with human subjects may be acceptable to the extent that they are performed in support of feasibility, proof-of-concept studies of early-stage technologies. Proposals that request support for clinical studies will be deemed non-compliant with the SBIR/STTR solicitations.

SH1. Business Models for User-Centered Healthcare
Proposed projects should include transformative business models that are enabled by novel technologies and are designed for the benefit of healthcare providers, consumers, patients and/or their caregivers. Such technology-driven business models will: reduce the cost of health care; facilitate the shift of public and private incentives toward patient-centric goals; empower patients and healthy individuals to participate in their own health and treatment, such as educating customers, accessing, and visualizing health data and knowledge; reduce the impact of socio-economic status, gender, and ethnicity in the participation of people in their own health treatment. Overall, these new business models are expected to improve health-related behaviors; improve patient-physician communication, patient engagement, and care coordination. Proposed projects must a) focus on the development of technology that enables such novel business model(s); and b) demonstrate the expected economic benefit of the novel business model in user-centered healthcare. 

SH2. Digital Health Information Infrastructure
Proposed projects may include technologies that will enable: interoperable, distributed, federated, and scalable digital infrastructure; languages and tools for effective sharing and use of electronic health record data, data representation for such including semantic metadata, and networked applications that access such data; continuously extensible universal exchange language for current and future health and wellness data originating from diverse sources in multiple formats; data methods for controlling and maintaining data integrity, provenance, security, privacy, and reliability of original as well as aggregated data, providing trustworthy patient identification and authentication and access control protocols, and maintaining sensitivity to the legal, cultural, and ethical issues associated with universally accessible digital health data in the U.S.; or systems methods for measuring and optimizing operations to improve quality and productivity of healthcare delivery systems.

SH3. From Data to Decisions
Proposed projects may include methods and algorithms that: aggregate multi-scale clinical, biomedical, contextual, and environmental data about each patient (e.g., in EHRs, personal health records - PHR, etc.); enable unified and extensible metadata standards; serve as decision support tools to facilitate optimized patient-centered, evidence-based decisions; evaluate the safety, effectiveness, efficiency, and clinical outcomes of mobile health applications; integrate patient information with delivery systems performance and economic models to support operations management decisions; support inferences based on individual or population health data, multiple sources of potentially conflicting information, while complying with applicable policies and preferences; enable the secondary use of health data to support the assisted and automated discovery of reliable knowledge from aggregated population health records and the predictive modeling and simulation of health and disease. Proposals are encouraged to integrate technological, behavioral, socio-economic, value-driven actions, ethical, and systemic factors that interfere with patients' collaboration in care teams, adherence to treatment, and wellness regimens.

SH4. Interoperability of Medical Sensors, Devices and Robotics
Proposed projects may include protocols and interface standards to enable interoperable, temporally synchronized, medical prosthetic and embedded devices and devices for the continuous capture, storage, and transmission of physiological state and environmental data; assistive technology systems and devices for improved health and healthcare that incorporate sensory inputs and computational intelligence ranging from internal and external sensors, wearable prosthetics, and cognitive orthotics to surgical-assist robots and social robots; sensors, analysis tools, and activators needed to assess and limit adverse environmental effects on health and wellbeing; simulation and modeling methods and software tools that aid in the design and evaluation of sophisticated medical devices and how they communicate to medical information systems in the clinic, home, and in and around the person.